The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing.
نویسندگان
چکیده
The complete nucleotide sequences of rat M1- and M2-type pyruvate kinase mRNAs were determined by sequencing the cDNAs and by analyses of S1 nuclease mapping and primer extension. The sequences have an identical molecular size of about 2220 nucleotides excluding a poly(A) tail and include 1593-nucleotide coding region. Their nucleotide sequences are identical except for 160-nucleotide sequences within the coding regions. The amino acid sequences of the M1- and M2-type subunits deduced from the cDNA sequences differ by only 45 residues within domain C, which constitutes the main region responsible for intersubunit contact. The sequence of this region of the M2-type shows higher homology than that of the M1-type with the corresponding sequence of the L-type. Since the M2- and L-types are allosteric enzymes, unlike to the M1-type, the residues common to the M2- and L-types, but not the M1-type may be important for mediating the allosteric properties. Genomic clones encoding both M1- and M2-type isozyme mRNAs were isolated. By partial sequence analysis of a clone lambda MPK37 four exons were identified, of which two adjacent exons coded the M1- and M2-specific sequences, respectively. The two remaining exons present downstream coded amino acids common to the two isozymes. Thus, we conclude that the M1- and M2-type isozymes of pyruvate kinase are produced from the same gene probably by alternative RNA splicing.
منابع مشابه
The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism.
Cancer cells preferentially metabolize glucose by aerobic glycolysis, characterized by increased lactate production. This distinctive metabolism involves expression of the embryonic M2 isozyme of pyruvate kinase, in contrast to the M1 isozyme normally expressed in differentiated cells, and it confers a proliferative advantage to tumor cells. The M1 and M2 pyruvate-kinase isozymes are expressed ...
متن کاملManipulation of PK-M mutually exclusive alternative splicing by antisense oligonucleotides
Alternative splicing of the pyruvate kinase M gene involves a choice between mutually exclusive exons 9 and 10. Use of exon 10 to generate the M2 isoform is crucial for aerobic glycolysis (the Warburg effect) and tumour growth. We previously demonstrated that splicing enhancer elements that activate exon 10 are mainly found in exon 10 itself, and deleting or mutating these elements increases th...
متن کاملPyruvate kinase M2-specific siRNA induces apoptosis and tumor regression
The development of cancer-specific therapeutics has been limited because most healthy cells and cancer cells depend on common pathways. Pyruvate kinase (PK) exists in M1 (PKM1) and M2 (PKM2) isoforms. PKM2, whose expression in cancer cells results in aerobic glycolysis and is suggested to bestow a selective growth advantage, is a promising target. Because many oncogenes impart a common alterati...
متن کاملFIR haplodeficiency promotes splicing to pyruvate kinase M2 in mice thymic lymphoma tissues revealed by six-plex tandem mass tag quantitative proteomic analysis
The switch of pyruvate kinase (PK) M1 to PKM2 is pivotal for glucose metabolism in cancers. The PKM1/M2 shift is controlled by the alternative splicing of two mutually exclusive exons in the PKM gene. PKM1 is expressed in differentiated tissues, whereas PKM2 is expressed in cancer tissues. This study revealed that the haplodeficiency of FUSE-binding protein (FBP)-interacting repressor (FIR), a ...
متن کاملIsoform Switch of Pyruvate Kinase M1 Indeed Occurs but Not to Pyruvate Kinase M2 in Human Tumorigenesis
Muscle type of pyruvate kinase (PKM) is one of the key mediators of the Warburg effect and tumor metabolism. Due to alternative splicing, there are at least 12 known isoforms of the PKM gene, of which PKM1 and PKM2 are two major isoforms with only a 23 amino acid sequenced difference but quite different characteristics and functions. It was previously thought the isoform switch from PKM1 to PKM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 261 29 شماره
صفحات -
تاریخ انتشار 1986